Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Genet. mol. biol ; 41(1,supl.1): 355-370, 2018. tab, graf
Article in English | LILACS | ID: biblio-892484

ABSTRACT

Abstract sn-Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is an important enzyme that catalyzes the transfer of an acyl group from acyl-CoA or acyl-ACP to the sn-1 or sn-2 position of sn-glycerol-3-phosphate (G3P) to generate lysophosphatidic acids (LPAs). The functional studies of GPAT in plants demonstrated its importance in controlling storage and membrane lipid. Identifying genes encoding GPAT in a variety of plant species is crucial to understand their involvement in different metabolic pathways and physiological functions. Here, we performed genome-wide and evolutionary analyses of GPATs in plants. GPAT genes were identified in all algae and plants studied. The phylogenetic analysis showed that these genes group into three main clades. While clades I (GPAT9) and II (soluble GPAT) include GPATs from algae and plants, clade III (GPAT1-8) includes GPATs specific from plants that are involved in the biosynthesis of cutin or suberin. Gene organization and the expression pattern of GPATs in plants corroborate with clade formation in the phylogeny, suggesting that the evolutionary patterns is reflected in their functionality. Overall, our results provide important insights into the evolution of the plant GPATs and allowed us to explore the evolutionary mechanism underlying the functional diversification among these genes.

2.
Genet. mol. biol ; 40(1,supl.1): 373-386, 2017. tab, graf
Article in English | LILACS | ID: biblio-892382

ABSTRACT

Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

3.
Genet. mol. biol ; 28(3,suppl): 529-538, Nov. 2005. ilus, tab
Article in English | LILACS | ID: lil-440457

ABSTRACT

Antioxidant metabolism protects cells from oxidative damage caused by reactive oxygen species (ROS). In plants, several enzymes act jointly to maintain redox homeostasis. Moreover, isoform diversity contributes to the fine tuning necessary for plant responses to both exogenous and endogenous signals influencing antioxidant metabolism. This study aimed to provide a comprehensive view of the major classes of antioxidant enzymes in the woody species Eucalyptus grandis. A careful survey of the FORESTs data bank revealed 36 clusters as encoding antioxidant enzymes: six clusters encoding ascorbate peroxidase (APx) isozymes, three catalase (CAT) proteins, three dehydroascorbate reductase (DHAR), two glutathione reductase (GR) isozymes, four monodehydroascorbate reductase (MDHAR), six phospholipid hydroperoxide glutathione peroxidases (PhGPx), and 12 encoding superoxide dismutases (SOD) isozymes. Phylogenetic analysis demonstrated that all clusters (identified herein) grouped with previously characterized antioxidant enzymes, corroborating the analysis performed. With respect to enzymes involved in the ascorbate-glutathione cycle, both cytosolic and chloroplastic isoforms were putatively identified. These sequences were widely distributed among the different ESTs libraries indicating a broad gene expression pattern. Overall, the data indicate the importance of antioxidant metabolism in eucalyptus


Subject(s)
Antioxidants/metabolism , Eucalyptus/genetics , Ascorbate Oxidase , Catalase , Databases, Genetic , Enzymes/metabolism , Eucalyptus/metabolism , Plants/genetics , Plants/metabolism
4.
Genet. mol. biol ; 27(1): 118-123, 2004. ilus, graf
Article in English | LILACS | ID: lil-357888

ABSTRACT

The expression of AtchitIV gene was analysed in Arabidopsis plants submitted to abiotic stresses. Transcript accumulation was detected in leaves in response to UV light exposure, exogenous salicylic acid administration and wounding. Transgenic Arabidopsis plants carrying AtchitIV promoter::gus fusion also showed differential expression of the reporter gene in response to these treatments. The AtchitIV expression was also analysed during Arabidopsis embryo development. GUS assay demonstrated AtchitIV promoter activation in zygotic embryos from torpedo stage up to full maturation. Promoter deletion analysis indicated that all the 5' cis-acting elements responsible for the specific tissue expression are located in a region of 1083 bp, adjacent to the start of transcription. A negative regulatory region located between portions -1083 and -600 was also observed.


Subject(s)
Arabidopsis , Gene Expression , Promoter Regions, Genetic , Arabidopsis , Plants, Genetically Modified , Stress, Mechanical
5.
Genet. mol. biol ; 24(1/4): 275-283, 2001. ilus, tab
Article in English | LILACS | ID: lil-313900

ABSTRACT

Proteinases cisteínicas säo peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda näo foram completamente elucidadas. Elas estäo envolvidas em um grande número de eventos, tais como: processamento e degradaçäo protéica, câncer, germinaçäo, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da Uniäo Internacional de Bioquímica e Biologia Molecular (IUBMB) como pertencentes à sub-sub-classe E.C.3.4.22, foram usadas na busca de clusters no banco de dados do SUCEST (SUgarCane EST project), utilizando-se o programa T-BLAST-n. Homologia de seqüências foram encontradas com 76 clusters que correspondem a prováveis proteinases cisteínicas. O alinhamento destas seqüências com a de outras proteases cisteínicas, de diversas origens, forneceu informaçäo quanto à classificaçäo e possível funçäo das proteinases de cana-de-açúcar. Além disso, o padräo de expressäo de cada gene foi postulado a partir da correlaçäo direta com as bibliotecas de cDNA do SUCEST dos quais os clusters foram derivados. Uma vez que nenhum gene de protease cisteínica foi anteriormente evidenciado em cana-de-açúcar, este estudo representa uma etapa inicial para o estudo de novos aspectos bioquímicos, fisiológicos e biotecnológicos destas enzimas.


Subject(s)
Animals , Cysteine Endopeptidases/classification , Plant Proteins/classification , Databases as Topic , Expressed Sequence Tags , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL